Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EBioMedicine ; 81: 104095, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1914309

ABSTRACT

BACKGROUND: Remdesivir was the first prodrug approved to treat coronavirus disease 2019 (COVID-19) and has the potential to be used during pregnancy. However, it is not known whether remdesivir and its main metabolite, GS-441524 have the potential to cross the blood-placental barrier. We hypothesize that remdesivir and predominant metabolite GS-441524may cross the blood-placental barrier to reach the embryo tissues. METHODS: To test this hypothesis, ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) coupled with multisite microdialysis was used to monitor the levels of remdesivir and the nucleoside analogue GS-441524 in the maternal blood, fetus, placenta, and amniotic fluid of pregnant Sprague-Dawley rats. The transplacental transfer was evaluated using the pharmacokinetic parameters of AUC and mother-to-fetus transfer ratio (AUCfetus/AUCmother). FINDINGS: Our in-vivo results show that remdesivir is rapidly biotransformed into GS-441524 in the maternal blood, which then readily crossed the placenta with a mother-to-fetus transfer ratio of 0.51 ± 0.18. The Cmax and AUClast values of GS-441524 followed the order: maternal blood > amniotic fluid > fetus > placenta in rats. INTERPRETATION: While remdesivir does not directly cross into the fetus, however, its main metabolite, GS-441524 readily crosses the placenta and can reside there for at least 4 hours as shown in the pregnant Sprague-Dawley rat model. These findings suggest that careful consideration should be taken for the use of remdesivir in the treatment of COVID-19 in pregnancy. FUNDING: Ministry of Science and Technology of Taiwan.


Subject(s)
COVID-19 Drug Treatment , Pregnancy Complications, Infectious , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amniotic Fluid , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biotransformation , Female , Fetus/metabolism , Furans/metabolism , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pyrroles/metabolism , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods
2.
Microbiol Spectr ; 10(2): e0164221, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1774934

ABSTRACT

Due to the emergence of multidrug-resistant strains of yeasts belonging to the Candida genus, there is an urgent need to discover antifungal agents directed at alternative molecular targets. The aim of the current study was to evaluate the capacity of three different series of synthetic compounds to inhibit the Candida glabrata enzyme denominated 3-hydroxy-methyl-glutaryl-CoA reductase and thus affect ergosterol synthesis and yeast viability. Compounds 1c (α-asarone-related) and 5b (with a pyrrolic core) were selected as the best antifungal candidates among over 20 synthetic compounds studied. Both inhibited the growth of fluconazole-resistant and fluconazole-susceptible C. glabrata strains. A yeast growth rescue experiment based on the addition of exogenous ergosterol showed that the compounds act by inhibiting the mevalonate synthesis pathway. A greater recovery of yeast growth occurred for the C. glabrata 43 fluconazole-resistant (versus fluconazole-susceptible) strain and after treatment with 1c (versus 5b). Given that the compounds decreased the concentration of ergosterol in the yeast strains, they probably target ergosterol synthesis. According to the docking analysis, the inhibitory effect of 1c and 5b could possibly be mediated by their interaction with the amino acid residues of the catalytic site of the enzyme. Since 1c displayed higher binding energy than α-asarone and 5b, it is the best candidate for further research, which should include structural modifications to increase its specificity and potency. The derivatives could then be examined with in vivo animal models using a therapeutic dose. IMPORTANCE Within the context of the COVID-19 pandemic, there is currently an epidemiological alert in health care services due to outbreaks of Candida auris, Candida glabrata, and other fungal species multiresistant to conventional antifungals. Therefore, it is important to propose alternative molecular targets, as well as new antifungals. The three series of synthetic compounds herein designed and synthesized are inhibitors of ergosterol synthesis in yeasts. Of the more than 20 compounds studied, two were selected as the best antifungal candidates. These compounds were able to inhibit the growth and synthesis of ergosterol in C. glabrata strains, whether susceptible or resistant to fluconazole. The rational design of antifungal compounds derived from clinical drugs (statins, fibrates, etc.) has many advantages. Future studies are needed to modify the structure of the two present test compounds to obtain safer and less toxic antifungals. Moreover, it is important to carry out a more in-depth mechanistic approach.


Subject(s)
COVID-19 , Candida glabrata , Acyl Coenzyme A , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida glabrata/metabolism , Drug Resistance, Fungal , Ergosterol/metabolism , Fibric Acids/metabolism , Fluconazole/metabolism , Fluconazole/pharmacology , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/metabolism , Microbial Sensitivity Tests , Pandemics , Pyrroles/metabolism , Pyrroles/pharmacology
3.
J Pharm Pharm Sci ; 24: 227-236, 2021.
Article in English | MEDLINE | ID: covidwho-1248472

ABSTRACT

PURPOSE: Remdesivir and its active metabolite are predominantly eliminated via renal route; however, information regarding renal uptake transporters is limited. In the present study, the interaction of remdesivir and its nucleoside analog GS-441524 with OATP4C1 was evaluated to provide the detailed information about its renal handling. METHODS: We used HK-2 cells, a proximal tubular cell line derived from normal kidney, to confirm the transport of remdesivir and GS-441524. To assess the involvement of OATP4C1 in handling remdesivir and GS-441524, the uptake study of remdesivir and GS-441524 was performed by using OATP4C1-overexpressing Madin-Darby canine kidney II (MDCKII) cells. Moreover, we also evaluated the IC50 and Ki value of remdesivir. RESULTS: The time-dependent remdesivir uptake in HK-2 cells was observed. The results of inhibition study using OATs and OCT2 inhibitors and OATP4C1 knockdown suggested the involvement of renal drug transporter OATP4C1. Remdesivir was taken up by OATP4C1/MDCKII cells. OATP4C1-mediated uptake of remdesivir increased linearly up to 10 min and reached a steady state at 30 min. Remdesivir inhibited OATP4C1-mediated transport in a concentration-dependent manner with the IC50 and apparent Ki values of 42 ± 7.8 µM and 37 ± 6.9 µM, respectively. CONCLUSIONS: We have provided novel information about renal handling of remdesivir. Furthermore, we evaluated the potential drug interaction via OATP4C1 by calculating the Ki value of remdesivir. OATP4C1 may play a pivotal role in remdesivir therapy for COVID-19, particularly in patients with kidney injury.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , COVID-19 Drug Treatment , Furans/metabolism , Kidney Tubules, Proximal/metabolism , Organic Anion Transporters/metabolism , Pyrroles/metabolism , Triazines/metabolism , Adenosine/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Alanine/metabolism , Alanine/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/metabolism , Cell Line , Dogs , Dose-Response Relationship, Drug , Drug Approval , Furans/therapeutic use , Humans , Kidney/drug effects , Kidney/metabolism , Kidney Tubules, Proximal/drug effects , Madin Darby Canine Kidney Cells , Organic Anion Transporters/antagonists & inhibitors , Pyrroles/therapeutic use , Triazines/therapeutic use
4.
Clin Pharmacokinet ; 60(5): 569-583, 2021 05.
Article in English | MEDLINE | ID: covidwho-1157031

ABSTRACT

Remdesivir (RDV, Veklury®) is a once-daily, nucleoside ribonucleic acid polymerase inhibitor of severe acute respiratory syndrome coronavirus 2 replication. Remdesivir has been granted approvals in several countries for use in adults and children hospitalized with severe coronavirus disease 2019 (COVID-19). Inside the cell, remdesivir undergoes metabolic activation to form the intracellular active triphosphate metabolite, GS-443902 (detected in peripheral blood mononuclear cells), and ultimately, the renally eliminated plasma metabolite GS-441524. This review discusses the pre-clinical pharmacology of RDV, clinical pharmacokinetics, pharmacodynamics/concentration-QT analysis, rationale for dose selection for treatment of patients with COVID-19, and drug-drug interaction potential based on available in vitro and clinical data in healthy volunteers. Following single-dose intravenous administration over 2 h of an RDV solution formulation across the dose range of 3-225 mg in healthy participants, RDV and its metabolites (GS-704277and GS-441524) exhibit linear pharmacokinetics. Following multiple doses of RDV 150 mg once daily for 7 or 14 days, major metabolite GS-441524 accumulates approximately 1.9-fold in plasma. Based on pharmacokinetic bridging from animal data and available human data in healthy volunteers, the RDV clinical dose regimen of a 200-mg loading dose on day 1 followed by 100-mg maintenance doses for 4 or 9 days was selected for further evaluation of pharmacokinetics and safety. Results showed high intracellular concentrations of GS-443902 suggestive of efficient conversion from RDV into the triphosphate form, and further supporting this clinical dosing regimen for the treatment of COVID-19. Mathematical drug-drug interaction liability predictions, based on in vitro and phase I data, suggest RDV has low potential for drug-drug interactions, as the impact of inducers or inhibitors on RDV disposition is minimized by the parenteral route of administration and extensive extraction. Using physiologically based pharmacokinetic modeling, RDV is not predicted to be a clinically significant inhibitor of drug-metabolizing enzymes or transporters in patients infected with COVID-19 at therapeutic RDV doses.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Adenosine/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Adult , Alanine/pharmacokinetics , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/pharmacokinetics , Area Under Curve , Dose-Response Relationship, Drug , Drug Interactions , Furans/metabolism , Half-Life , Humans , Metabolic Clearance Rate , Pyrroles/metabolism , SARS-CoV-2 , Triazines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL